Page 46 - The Journal of the Royal Society of Thailand
P. 46

วารสารราชบััณฑิิตยสภา
                                          ปีีที� ๔๙ ฉบัับัที� ๑ มักราคมั-เมัษายน ๒๕๖๗

             36                                                                      การหมัักผลิิตเอทานอลิโดยยีสต์



             เอกสารอ้างอิง

             Aceituno, F.F., Orellana, M., Torres, J., Mendoza, S., Slater, A.W., Melo, F. & Agosin, E. (2012).
                    Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under

                    carbon-sufficient, nitrogen-limited enological conditions. Applied and Environmental
                    Microbiology, 78(23), 8340-8352.
             Aguilera, F., Peinado, R.A., Millan, C., Ortega, J.M. & Mauricio, J.C. (2006). Relationship between

                    ethanol tolerance, H+ -ATPase activity and the lipid composition of the plasma
                    membrane in different wine yeast strains. International journal of food microbiology,

                    110, 34–42.
             Allen, S.A., Clark, W., McCaffery, J.M, Cai, Z., Lanctot, A., Slininger, P.J., Liu, Z.L. & Gorsich, S.W.
                    (2010). Furfural induces reactive oxygen species accumulation and cellular damage in

                    Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 2.
             Alper, H., Moxley, J., Nevoigt, E., Fink, G.R., & Stephanopoulos, G. (2006). Engineering yeast
                    transcription machinery for improved ethanol tolerance and production. Science,

                    314(5805), 1565–1568.
             Auesukaree, C., Koedrith, P., Saenpayavai, P., Asvarak, T., Benjaphokee, S., Sugiyama, M.,
                    Kaneko, Y., Harashima, S., & Boonchird, C. (2012). Characterization and gene expression

                    profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. Journal
                    of Bioscience and Bioengineering, 114, 144e149.

             Bafrnacová, P., Smogrovicova, D., Slavikova, I., Atkova, J. & Domeny, Z. (1999). Improvement of
                    very high gravity ethanol fermentation by media supplementation using Saccharomyces
                    cerevisiae. Biotechnology Letters, 21, 337–341.

             Banat, I.M. & Marchant, R. (1995). Characterization and potential industrial applications of
                    five novel, thermotolerant, fermentative, yeast strains. World Journal of Microbiology

                    and Biotechnology, 11, 304–306.
             Banat, I.M., Nigam, P., Singh, D., Marchant, R, & McHale, A.P. (1998). Ethanol production at
                    elevated temperatures and alcohol concentrations: Part I–yeasts in general.

                    World Journal of Microbiology and Biotechnology, 14, 809-821.
             Bangrak, P., Limtong, S. & Phisalaphong, M. (2011). Continuous ethanol production using
                    immobilized yeast cells entrapped in loof are in forced alginate carriers. Brazilian

                    Journal of Microbiology, 42, 676-684.
             Baptista, M., Domingues, L. (2022). Kluyveromyces marxianus as a microbial cell factory for
                    lignocellulosic biomass valorization. Biotechnology Advances, 60, 108027
   41   42   43   44   45   46   47   48   49   50   51