Page 51 - The Journal of the Royal Society of Thailand
P. 51

วารสารราชบััณฑิิตยสภา
                                               ปีีที� ๔๙ ฉบัับัที� ๑ มกราคม-เมษาย์น ๒๕๖๗

                    ศาสตราจารย์์ ดร.สาวิิตรี  ลิ่ิ�มทอง                                                   41



                  Ra, C.H., Jung, J.H., Sunwoo, I.Y., Kang, C.H., Jeong, G.T. & Kim, S.K. (2015). Detoxification of
                         eucheuma spinosum hydrolysates with activated carbon for ethanol production by the

                         salt-tolerant yeast Candida tropicalis. Journal of Microbiology and Biotechnology, 25(6),
                         856-862.
                  Reis, V.R., Antonangelo, A.T.B.F., Bassi, A.P.G., Colombi, D. & Ceccato-Antonini, S.R. (2017).

                         Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and
                         stress resistance. Brazilian Journal of Microbiology, 48, 268-274.
                  Salmon, J.M., Vincent, O., Mauricio, J.M., Bely, M. & Barre, P. (1993). Sugar transport inhibition
                         and apparent loss of activity in Saccharomyces cerevisiae as a major limiting factor of
                         enological fermentations. American Journal of Enology and Viticulture, 44, 56–64.

                  Sehnem, N.T., Machado Â.S., Matte C.R., de Morais, J.R. & Ayub, M.A.Z. (2020). Second-generation
                         ethanol production by Wickerhamomyces anomalus strain adapted to furfural,
                         5-hydroxymethylfurfural (HMF), and high osmotic pressure. Anais da Academia

                         Brasileira de Ciências, 92(Suppl. 2), e20181030 DOI 10.1590/0001-3765202020181030
                  Silalertruksa, T. & Gheewala, S.H. (2010). Security of feedstocks supply for future bio-ethanol
                         production in Thailand. Energy Policy, 38(11), 7476-7486.
                  Singer, M.A. & Lindquist, S. (1998). Thermotolerance in Saccharomyces cerevisiae: the Yin and
                         Yang of trehalose. Trends in Biotechnology, 16, 460e468.

                  Snoek, T., Picca, N.M., Van den Bremt, S., Mertens, S., Saels, V., Verplaetse, A., Steensels, J. &
                         Verstrepen, K.J. (2015). Large-scale robot-assisted genome shufing yields industrial
                         Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotechnology for

                         Biofuels, 8, 32
                  Sree, N.K., Sridhar, M., Suresh, K., Banat, I.M. & Rao, L.V. (2000). Isolation of thermotolerant,
                         osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresource
                         Technology, 72, 43-46.
                  Thomas, K., Hynes, S.H. & Ingledew, W.M. (1996). Effect of nitrogen limitation on synthesis of

                         enzymes in Saccharomyces cerevisiae during fermentation of high concentration of
                         carbohydrates. Biotechnology Letter, 18, 1165–1168.
                  Voordeckers, K., Kominek, J., Das, A., Espinosa-Cantu, A., De Maeyer, D., Marchal, K., DeLuna,

                         A., Jelier, R. & Verstrepen, K. (2015). Adaptation to high ethanol reveals complex
                         evolutionary pathways. PLoS Genet, 11(11), e1005635.
                  Yuangsaard, N., Yongmanitchai, W., Yamada, M. & Limtong, S. (2013). Selection and
                         characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for
                         ethanol production at high temperature from cassava starch hydrolysate. Antonie

                         Van Leeuwenhoek, 103, 577-588.
   46   47   48   49   50   51   52   53   54   55   56