Page 48 - The Journal of the Royal Society of Thailand
P. 48

วารสารราชบััณฑิิตยสภา
                                          ปีีที� ๔๙ ฉบัับัที� ๑ มักราคมั-เมัษายน ๒๕๖๗

             38                                                                      การหมัักผลิิตเอทานอลิโดยยีสต์



             Fonseca, G.G., Gombert, A.K., Heinzle, E. & Wittmann, C. (2007). Physiology of the yeast

                    Kluyveromyces marxianus during batch and chemostat cultures with glucose as the
                    sole carbon source. FEMS Yeast Research, 7, 422-435.

             Guadalupe-Daqui, M., Goodrich-Schneider, R.M., Sarnoski, P.J., Carriglio, J.C., Sims, C.A., Pearson,
                    B.J. & MacIntosh, A.J. (2023). The effect of CO  concentration on yeast fermentation:
                                                                 2
                    rates, metabolic products, and yeast stress indicators. Journal of Industrial

                    Microbiology and Biotechnology, 50(1), kuad001.
             Haque, Md.A, Barman, D.N., Kang, T.H., Kim, M.K., Kim, J., Kim, H. & Yun, H.D. (2012). Effect of
                    dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum

                    vulgare) at boiling temperature with low residence time. Journal of Microbiolog and
                    Biotechnology, 22, 1681-1691.
             Hawaz, E., Tafesse, M., Tesfaye, A., Kiros, S., Beyene, D., Kebede, G., Boekhout, T., Groenwald,

                    M., Theelen, B., Degefe, A., Degu, S., Admasu, A., Hunde, B. & Muleta, D. (2023).
                    Optimization of bioethanol production from sugarcane molasses by the response

                    surface methodology using Meyerozyma caribbica isolate MJTm3.  Annals of
                    Microbiology, 73, 2.
             Hoang, T.D. & Nghiem, N. (2021). Recent Developments and Current Status of Commercial

                    Production of Fuel Ethanol. Fermentation, 7(4).
             Hou L. (2010). Improved production of ethanol by novel genome shufing in Saccharomyces

                    cerevisiae. Applied Biochemistry and Biotechnology, 160(4), 1084–1093.
             Hranilovic, A., Gambetta, J.M., Schmidtke, L., Boss, P.K., Grbin, P.R., Masneuf-Pomarede, I., Bely,
                    M., Albertin, W. & Jiranek, V. (2018). Oenological traits of Lachancea thermotolerans

                    show signs of domestication and allopatric differentiation. Scientific Reports, 8, 14812.
             Joshi, J., Dhungana, P., Prajapati, B., Maharjan, R., Poudyal, P., Yadav, M., Mainali, M., Yadav,
                    A.P., Bhattarai, T. & Sreerama, L. (2019). Enhancement of ethanol production in

                    electrochemical cell by Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces
                    anomalus (CDBT7). Frontiers in Energy Research, 7, 70.
             Karim, A., N. Gerliani, & M. Aïder. (2020). Kluyveromyces marxianus: An emerging yeast cell

                    factory for applications in food and biotechnology. International Journal of Food
                    Microbiology, 333, 108818,

             Kim, H.S., Kim, N.R., Yang, J., & Choi, W. (2011). Identifcation of novel genes responsible for
                    ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces
                    cerevisiae. Applied Microbiology and Biotechnology, 91(4), 1159–1172.
   43   44   45   46   47   48   49   50   51   52   53