Page 199 - 46-1
P. 199

วารสารราชบััณฑิิตยสภา
                                          ปีีที่่� ๔๖ ฉบัับัที่่� ๑  มกราคม-เมษายน ๒๕๖๔
             ศาสตราจารย์์ ดร.ธนารักษ์์ ธีระมั่ั�นคง และนางสาวเบญจพรรณ สมั่ณะ                 191


                     Representations 2015. San Diego, CA. [online]. from https://arxiv.org/abs/

                     1409.1556.

             Sriapha, Charuwan & Tongpoo, Achara & Wongvisavakorn, Sunun & Rittilert, Panee &
                     Trakulsrichai, Satariya & Srisuma, Sahaphume & Wananukul, Winai. (2015).
                     Plant Poisoning in Thailand: A 10-year Analysis from Ramathibodi Poison Center.

                     The Southeast Asian journal of tropical medicine and public health.

                     46. 1063–76.
             Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014). Dropout:
                     A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine

                     Learning Research. 15, 1929-1958. [online]. from http://jmlr.org/papers/v15/

                     srivastava14a.html.
             Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. & Anguelov, D. et al. (2015). Going
                     deeper with convolutions. In 2015 IEEE Conference on Computer Vision and

                     Pattern Recognition (CVPR). Boston, MA, USA: IEEE. [online]. from https://

                     ieeexplore.ieee.org/document/7298594.
             Tan, M. & V. Le, Q. (2019). EfficientNet: Rethinking Model Scaling for Convolutional
                     Neural Networks. In Thirty-sixth International Conference on Machine

                     Learning (ICML 2019). Long Beach, California, USA.

             Thye Hang, S., & Aono, M. (2019). Open world plant image identification based on
                     convolutional neural network. In 2016 Asia-Pacific Signal and Information
                     Processing Association Annual Summit and Conference (APSIPA). Jeju,

                     South Korea: IEEE. [online]. from https://ieeexplore.ieee.org/document/7820676

                     University of British Columbia. (2000). Method and apparatus for identifying
                     scale invariant features in an image and use of same for locating an object in
                     an image. US.

             Zhang, C., Zou, P., Li, C. & Liu, L. (2015). A Convolutional Neural Network for Leaves

                     Recognition Using Data Augmentation. In 2015 IEEE International Conference
   194   195   196   197   198   199   200   201   202   203   204