Page 198 - 46-1
P. 198

วารสารราชบััณฑิิตยสภา
                                        ปีีที่่� ๔๖ ฉบัับัที่่� ๑  มกราคม-เมษายน ๒๕๖๔
           190                  การเปรียบเทีียบสมรรถนะการร้�จำำาภาพใบไม�ด้�วยลัักษณะเด้่นแบบใช้�ความร้�แลัะแบบคอนเนกช้ันนิสต์์


           Mahdikhanlou, K. & Ebrahimnezhad, H. (2014). Plant leaf classification using centroid

                    distance and axis of least inertia method. In 2014 22  Iranian Conference
                                                                        nd
                    on Electrical Engineering (ICEE). Tehran, Iran: IEEE. [online]. from https://
                    ieeexplore.ieee.org/abstract/document/6999810
           Nijalingappa, P. & Madhumathi, V. (2015). Plant identification system using its leaf

                    features. In 2015 International Conference on Applied and Theoretical

                    Computing and Communication Technology (iCATccT). Davangere, India:
                    IEEE. [online]. from https://ieeexplore.ieee.org/document/7456906
           O. Söderkvist, O. (2001). Computer vision classification of leaves from swedish trees

                    (M.Eng.). Linkoping University.

           P. Kingma, D. & Ba, J. (2015). Adam: A Method for Stochastic Optimization. In 3
                                                                                             rd
                    International Conference for Learning Representations. San Diego. [online].
                    from https://arxiv.org/abs/1412.6980

           Ramachandran, P., Zoph, B. & V. Le, Q. (2019). Searching for Activation Functions.

                    In Sixth International Conference on Learning Representations. Vancouver,
                    CANADA. [online]. from https://arxiv.org/abs/1710.05941
           Rao, A., & Kulkarni, S. (2017). An improved technique of plant leaf classificaion using

                    hybrid feature modeling. In 2017 International Conference on Innovative

                    Mechanisms for Industry Applications (ICIMIA). Bangalore, India: IEEE.
                    [online]. from https://ieeexplore.ieee.org/document/7975579.
           Rojas-Hernández, R., López-Chau, A., Trujillo-Mora, V. & Rojas-Hernández, C. (2016).

                    Plant identification using new geometric features with standard data mining

                    methods.In 2016 IEEE 13 International Conference on Networking, Sensing,
                                            th
                    and Control (ICNSC). Mexico City, Mexico: IEEE. [online]. from https://
                    ieeexplore.ieee.org/document/7479024.

           Simonyan, K. & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale

                    Image Recognition. In ICLR 2015: International Conference on Learning
   193   194   195   196   197   198   199   200   201   202   203