Page 236 - Journal451
P. 236
วารสารราชบััณฑิิตยสภา
ปีีที่่� ๔๕ ฉบัับัที่่� ๑ มกราคม-เมษายน ๒๕๖๓
224 สิ่่�งทอนาโน
Xia, G., Zhang, L., Chen, X., Huang, Y., Sun, D., Fang, F., Guo, Z., Yu, X. (2018). Carbon
hollow nanobubbles on porous carbon nanofibers: An ideal host for high-
performance sodium-sulfur batteries and hydrogen storage. Energy Storage
Materials. 14: 314-323 [online]. from https://doi.org/10.1016/j.ensm.
2018.05.008. [29 Aug 2020].
Xu, P., Wang, W., Chen, S.-L. (2005). Application of nanosol on the antistatic property
of polyester. Melliand International. 11: 56-59.
Yang, L., Leung, W.W.-F. (2011). Application of a bilayer TiO2 nanofiber photoanode
for optimization of dye-sensitized solar cells. Adv. Mater. 23: 4559-4562.
[online]. from https://doi.org/10.1002/adma.201102717. [29 Aug 2020].
Yao, J., Bastiaansen, C., Peijs, T. (2014). High strength and high modulus electrospun
nanofibers. Fibers. 2: 158-186. [online]. from https://doi.org/10.3390/fib
2020158. [29 Aug 2020].
Yetisen, A.K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M.R., Hinestroza, J.P., Skorobogatiy,
M., Khademhosseini, A., Yun, S.H. (2016). Nanotechnology in textiles. ACS
Nano. 10: 3042-3068. [online]. from https://doi.org/10.1021/acsnano.5b08176.
[29 Aug 2020].
Yin, X., Li, Y., Weng, P., Yu, Q., Han, L., Xu, J., Zhou, Y., Tan, Y., Wang, L., Wang, H.
(2018). Simultaneous enhancement of toughness, strength and superhydro-
philicity of solvent-free microcrystalline cellulose fluids/poly(lactic acid)
fibers fabricated via electrospinning approach. Composites Science and
Technology. 167: 190-198. [online]. from https://doi.org/10.1016/j.comp-
scitech.2018.08.003. [29 Aug 2020].
Zhang, F., Yang, J. (2009). Preparation of nano-zno and its application to the textile
on antistatic finishing. IJC. 1: 18. [online]. from https://doi.org/10.5539/ijc.
v1n1p18. [29 Aug 2020].
Zhou, Z., Chu, L., Tang, W., Gu, L. (2003). Studies on the antistatic mechanism of
tetrapod-shaped zinc oxide whisker. J. Electrostat. 57: 347-354.