สำนักราชบัณฑิตยสภา

«“√ “√ √“™∫— ≥±‘ µ¬ ∂“π ªï ∑’Ë Û ©∫— ∫∑’Ë Ò ¡.§.-¡’ .§. ÚıÙ¯ 69 Somsak Damronglerd, et al. dehydrogenase II homolog able to oxidize NADPH. FEMS Microbiol. Lett. 204 : 271-276. 33. Meganathan, R., and R. Coffell. 1985. Identity of the quinone in Bacillus alcalophilus. J. Bacteriol. 164 : 911-913. 34. Newman, D.K., and R. Kolter. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405 : 94-97. 35. Nortemann, B., J. Baumgarten, H.G. Rast, and H.J. Knackmuss. 1986. Bacterial communities degrading amino-and hydroxynaphthalenesulfonates. Appl. Environ. Microbiol. 52 : 1195-1202. 36. Nortemann, B., A.E. Kuhm, H.J. Knackmuss, and A. Stolz. 1994. Conversion of substituted naphthalenesul fonates by Pseudomonas sp. BN6. Arch. Microbiol. 161 : 320-327. 37. Ohe, T., and Y. Watanabe. 1986. Degradation of 2-naphthylamine-1-sulfonic acid by Pseudomonas strain TA-1. Agric. Biol. Chem. 50 : 1419-1426. 38. OûNeill, C., A. Lopez, S. Esteves, F.R. Hawkes, D.L. Hawkes, and S. Wilcox. 2000. Azo-dye degradation in an anaerobic- aerobic treatment system operating on simulated textile effluent. Appl. Microbiol. Biotechnol. 53 : 249-254. 39. OûNeill, C., F.R. Hawkes, D.L. Hawkes, S. Esteves, and S.J. Wilcox. 2000. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Wat. Res. 34 : 2355-2361. 40. Pagga, U., and D. Brown. 1986. The degradation of dyestuffs: part II-behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15 : 479-491. 41. Rafii, F., and T. Coleman. 1999. Cloning and expression in Escherichia coli of an azoreductase gene from Clostridium perfringens and comparison with azoreductase genes from other bacteria. J. Basic Microbiol. 39 : 29-35. 42. Rau, J., H-J. Knackmuss, and A. Stolz. 2002. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ. Sci. Technol. 36 : 1497-1504. 43. Rau, J. and A. Stolz. 2003. Oxygen- insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl. Environ. Microbiol. 69 : 3448-3455. 44. Razo-Flores, E., M. Luijten, B. Donlon, G. Lettinga, and J. Field. 1997. Biodegradation of selected azo dyes under methanogenic conditions. Water Sci. Technol. 36 : 65-72. 45. Roxon, J.J., A.J. Ryan, and S.E. Wright. 1967. Enzymatic reduction of tartrazine by Proteus vulgaris from rats. Fd. Cosmet. Toxicol. 5 : 645-656. 46. Russ, R., J. Rau, and A. Stolz. 2000. The function of cytoplasmatic flavin reductases in the bacterial reduction of azo dyes. Appl. Environ. Microbiol. 66 : 1429- 1434. 47. Scott, D.T., D.M. McKnight, E.L. Blunt- Harris, S.E. Kolesar, and D.R. Lovley. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32 : 2984-2989. 48. Shaul, G.M., T.J. Holdsworth, C.R. Dempsey, and K.A. Dostal. 1991. Fate of water soluble azo dyes in the activated sludge process. Chemosphere 22 : 107-119. 49. Stevenson, F. J. 1994. Humus chemistry: genesis, composition, reactions, 2 nd ed. John Wiley & Sons, Inc., New York, N.Y. 50. Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56 : 69-80. 51. Supaka, N. 2003. Microbial decoloriza- tion of reactive dyes in an anaerobicaerobic treatment system, Ph.D. thesis. Chulalongkorn University, Bangkok, Thailand. 52. Supaka, N., K. Juntongjin, M.L. Delia, P. Strehaiano, and S. Damronglerd. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem. Eng. J., in press. 53. Tan, N., F.X. Prenafeta-Bold, J.L. Opsteeg, G. Lettinga, and J.A. Field. 1999. Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl. Microbiol. Biotechnol. 51 : 865-871. 54. Van der Zee, F.P., I.A.E. Bisschops, and G. Lettinga. 2003. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environ. Sci. Technol. 37 : 402-408. 55. Ward, M.J., Q.S. Fu, K.R. Rhoads, C.H. J.Yeung, A.M. Spormann, and C.S. Criddle. 2003. A derivative of the menaquinone precursor 1,4-dihydroxy-2- naphthoate is involved in the reductive transformation of carbon tetrachloride by aerobically grown Shewanella oneidensis MR-1. Appl. Microbiol. Biotechnol, in press. 56. Wuhrmann, K., K. Mechsner, and T. Kappeler. 1980. Investigation on rate- determining factors in the microbial reduction of azo dyes. Eur. J. Appl. Microbiol. 9 : 325-338. 57. Yagi, T. 1991. Bacterial NADH-quinone oxidoreductase. J. Bioenerg. Biomembr. 23 : 211-225. 58. Yano, T. 2002. The energy-transducing NADH: quinone oxidoreductase, complex I. Mol. Asp. Med. 23 : 345-368. 59. Zee, V.F.P., G. Lettinga, and J.A. Field.

RkJQdWJsaXNoZXIy NTk0NjM=