สำนักราชบัณฑิตยสภา

สารฮิ วมิ กช่วยเพิ่ มความสามารถการลดสี ... 222 The Journal of the Royal Institute of Thailand Vol. 37 No. 1 Jan.-Mar. 2012 48. Shaul, G. M., T. J. Holdsworth, C. R. Dempsey, and K. A. Dostal. Fate of water soluble azo dyes in the activated sludge process. Chemosphere 1991. 22 : 107–119. 49. Stevenson, F. J. Humus chemistry: genesis, composition, reactions, 2nd ed. John Wiley & Sons, Inc., New York, N.Y. 1994. 50. Stolz, A. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 2001. 56 : 69–80. 51. Supaka, N. Microbial decolorization of reactive dyes in an anaerobic-aerobic treatment system, Ph.D. thesis. Chulalongkorn University, Bangkok, Thailand. 2003. 52. Supaka, N., K. Juntongjin, M. L. Delia, P. Strehaiano, and S. Damronglerd. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem. Eng. J., in press. 53. Tan, N., F. X. Prenafeta-Bold, J. L. Opsteeg, G. Lettinga, and J. A. Field. Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl. Microbiol. Biotechnol. 1999. 51 : 865–871. 54. Van der Zee, F. P., I. A. E. Bisschops, and G. Lettinga. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environ. Sci. Technol. 2003. 37 : 402-408. 55. Ward, M. J., Q. S. Fu, K. R. Rhoads, C. H. J. Yeung, A. M. Spormann, andC. S. Criddle. 2003. A derivative of the menaquinone precursor 1,4-dihydroxy-2-naph-thoate is involved in the reductive transformation of carbon tetrachloride by aerobically grown Shewanella oneidensis MR-1. Appl. Microbiol. Biotechnol, in press. 56. Wuhrmann, K., K. Mechsner, and T. Kappeler. Investigation on rate-determining factors in the microbial reduction of azo dyes. Eur. J. Appl. Microbiol. 1980. 9 : 325–338. 57. Yagi, T. Bacterial NADH-quinone oxidoreductase. J. Bioenerg. Biomembr. 1991. 23 : 211–225.

RkJQdWJsaXNoZXIy NTk0NjM=